147 research outputs found

    Underwater swarm robotics consensus control

    Full text link
    The control of a swarm of underwater robots requires more than just a control algorithm, it requires a communications system. Underwater communications is difficult at the best of times and so large time delays and minimal information is a concern. The control system must be able to work on minimal and out of date information. The control system must also be able to control a large number of robots without a master control, a decentralized control approach. This paper describes one such control method

    Design of a prototype underwater research platform for swarm robotics

    Full text link
    To perform under water robotic research requires specialized equipment. A few pieces of electronics atop a set of wheels are not going to cut it. An underwater research platform must be waterproof, reliable, robust, recoverable and easy to maintain. It must also be able to move in 3 dimensions. Also it must be able to navigate and avoid obstacles. Further if this platform is to be part of a swarm of like platforms then it must be cost effective and relatively small. To purchase such a platform can be very expensive. However, for shallow water, a suitable platform can be built from mostly off the shelf items at little cost. This article describes the design of one such underwater robot including various sensors and communications systems that allow for swarm robotics. Whilst the robotic platform performs well, to explore what many of them would do, that is more than are available, simulation is required. This article continues to study how best to simulate these robots for a swarm, or system of systems, approach

    Consensus control for a system of underwater swarm robots

    Full text link
    The control of a swarm of underwater robots requires both a control algorithm and a communication system. Unfortunately, underwater communications is difficult at the best of times and so large time delays and minimal information is a concern. The control system must be able to handle a large number of robots without a master control, i.e., a decentralized control approach. This paper describes Consensus control as a way to decentralize. Consensus control allows each robot to know the final goal and then to decide, based on the position of the other robots, its best move to help achieve the goal

    Communications for underwater robotics research platforms

    Full text link
    This paper presents a distributed protocol for communication among autonomous underwater vehicles. It is a complementary approach for coordination between the autonomous underwater vehicles. This paper mainly describes different methods for underwater communication. One of the methods is brute force approach in which messages are broadcasted to all the communication nodes, which in turn will broadcast the acknowledgement. Issues relating to this brute force approach are time delay, number of hops, power consumption, message collision and other practical issues. These issues are discussed and solved by proposing a new method to improve efficiency of this proposed approach and its effectiveness in communication among autonomous underwater vehicles.<br /

    Distributed protocol for communications among underwater vehicles

    Full text link
    Underwater surveying by swarms of autonomous underwater vehicles presents problems in communication among the robots. These problems involve the bandwidth, power consumption, timing, processing power, and other issues. This paper presents a novel approach to communicate and coordinate effectively among underwater vehicles to accomplish this task successfully. The proposed approach solves issues by reducing the number of hops to conserve power, while reducing computation time and bandwidth, effectively utilizing resources to reduce the load on each node. Finally, the simulation results are presented, in order to prove that the proposed approach improves efficiency and effectiveness in communicating among underwater vehicles.<br /

    Depth Estimation of an Underwater Object Using a Single Camera

    Get PDF
    Underwater robotics is currently a growing field. To be able to autonomously find and collect objects on the land and in the air is a complicated problem, which is only compounded within the underwater setting. Different techniques have been developed over the years to attempt to solve this problem, many of which involve the use of expensive sensors. This paper explores a method to find the depth of an object within the underwater setting, using a single camera source and a known object. Once this known object has been found, information about other unknown objects surrounding this point can be determined, and therefore the objects can be collected

    Simulation of underwater robots using MS Robot Studio©

    Full text link
    One stage in designing the control for underwater robot swarms is to confirm the control algorithms via simulation. To perform the simulation Microsoftpsilas Robotic Studiocopy was chosen. The problem with this simulator and others like it is that it is set up for land-based robots only. This paper explores one possible way to get around this limitation. This solution cannot only work for underwater vehicles but aerial vehicles as well.<br /

    Detection of Large Bodies of Water for Heterogeneous Swarm Applications

    Get PDF
    Multiple robot systems are becoming popular, as introducing more robots into a system generally means that the system is able to finish a task quickly, as well as making the system more robust. Generally, these systems are homogenous in nature as they are easier to build, test and conceptualise. More applications of these types of systems in a heterogeneous sense is becoming a must, as these robots are acting in more than one medium such as on land and underwater. In this paper a subsystem of a heterogeneous swarm is investigated where a land based robot is to drive up to the edge of a pool and stop autonomously, allowing for the transfer of an object from an underwater robot. To detect the edge of a pool an Xbox Kinect sensor is used as it was found that by using the IR feed of the camera the problem becomes significantly simpler

    Time delay and power control in spread spectrum wireless networks

    Get PDF
    Delay in the computation of the signal-to-interference ratio in communication systems is unavoidable. In the case of mobile communication, delay is a very critical problem due the fast variation of the communication channel and the need for effective, fast and accurate power control. In this paper we present our approach to dealing with the delay in mobile communication systems as well as our controller to achieve and maintain the desired signal quality. We will concentrate on the code division multiple access (CDMA) systems
    corecore